An archived multi-objective simulated annealing for a dynamic cellular manufacturing system
Authors
Abstract:
To design a group layout of a cellular manufacturing system (CMS) in a dynamic environment, a multi-objective mixed-integer non-linear programming model is developed. The model integrates cell formation, group layout and production planning (PP) as three interrelated decisions involved in the design of a CMS. This paper provides an extensive coverage of important manufacturing features used in the design of CMSs and enhances the flexibility of an existing model in handling the fluctuations of part demands more economically by adding machine depot and PP decisions. Two conflicting objectives to be minimized are the total costs and the imbalance of workload among cells. As the considered objectives in this model are in conflict with each other, an archived multi-objective simulated annealing (AMOSA) algorithm is designed to find Pareto-optimal solutions. Matrix-based solution representation, a heuristic procedure generating an initial and feasible solution and efficient mutation operators are the advantages of the designed AMOSA. To demonstrate the efficiency of the proposed algorithm, the performance of AMOSA is compared with an exact algorithm (i.e., [-constraint method) solved by the GAMS software and a well-known evolutionary algorithm, namely NSGAII for some randomly generated problems based on some comparison metrics. The obtained results show that the designed AMOSA can obtain satisfactory solutions for the multi-objective model.
similar resources
A multi-objective model for designing a group layout of a dynamic cellular manufacturing system
This paper presents a multi-objective mixed-integer nonlinear programming model to design a group layout of a cellular manufacturing system in a dynamic environment, in which the number of cells to be formed is variable. Cell formation (CF) and group layout (GL) are concurrently made in a dynamic environment by the integrated model, which incorporates with an extensive coverage of important ...
full textA simulated annealing algorithm to determine a group layout and production plan in a dynamic cellular manufacturing system
In this paper, a mixed-integer linearized programming (MINLP) model is presented to design a group layout (GL) of a cellular manufacturing system (CMS) in a dynamic environment with considering production planning (PP) decisions. This model incorporates with an extensive coverage of important manufacturing features used in the design of CMSs. There are also some features that make the presented...
full textDeveloping a Multi-objective Mathematical Model for Dynamic Cellular Manufacturing Systems
This paper is in search of designing the cellular manufacturing systems (CMSs) under dynamic and flexible environment. CM is proper for small-to-medium lot production environment that helps the companies to produce variable kind of productions with at least scraps. The most important benefits of CM are decline in material handling, reduction in work-in-process, reduction in set-up time, increme...
full textA Multi-objective Optimization Model for Dynamic Virtual Cellular Manufacturing Systems
Companies and firms, nowadays, due to mounting competition and product diversity, seek to apply virtual cellular manufacturing systems to reduce production costs and improve quality of the products. In addition, as a result of rapid advancement of technology and the reduction of product life cycle, production systems have turned towards dynamic production environments. Dynamic cellular manufact...
full textAnalysis of Response Robustness for a Multi-Objective Mathematical Model of Dynamic Cellular Manufacturing
The multi-objective optimization problem is the main purpose of generating an optimal set of targets known as Pareto optimal frontier to be provided the ultimate decision-makers. The final selection of point of Pareto frontier is usually made only based on the goals presented in the mathematical model to implement the considered system by the decision-makers. In this paper, a mathematical model...
full textA hybrid simulated annealing for solving an extended model of dynamic cellular manufacturing system
This paper develops a mixed-integer programming model to design the cellular manufacturing systems (CMSs) under dynamic environment. In dynamic environment, the product mix and part demand change under a multi-period planning horizon. Thus, the best designed cells for one period may not be efficient for subsequent periods and reconfiguration of cells is required. Reconfiguration may involve add...
full textMy Resources
Journal title
volume 10 issue 2
pages -
publication date 2014-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023